A Compact Ion Source for Polar and Non-Polar Compounds

Rhodri N. Owen1 and Gareth Brenton1,2

1National Mass Spectrometry Facility (NMSF), Swansea University, Singleton Park, Swansea, UK SA2 8PP
2AberMS Ltd, Swansea, UK

Introduction
A flowing atmospheric pressure afterglow [1] ionisation source can handle a range of compound chemistries', from polar to non-polar compounds. A prototype ion source developed exhibited excellent quantitative characteristics and, in many cases, the sensitivity in quantitative studies was an order of magnitude greater than electrospray ionisation.

Aim: To develop a compact source capable of ionising polar and non-polar chemistries. To test the afterglow power using an oscilloscope using a metal probe.

Methods

- Instrumentation: Xevo G2-S Tof (Waters Corp, Manchester, UK) fitted with a modified universal source housing. HDO 4104 Oscilloscope (Teledyne LeCroy, Glasgow, UK).
- A glass melting point tube is used to deposit the sample, the glass tube is inserted into the side of the source into the afterglow discharge.
- All analyses was carried out in positive polarity. Data acquisition and processing was achieved using MassLynx 4.1.

Results

Figure 1. Original prototype alongside the new compact source, £1 coin shown for scale (1a). Schematic of discharge cell, samples introduced between anode and MS inlet on a glass melting point tube (1b).

The original prototype source has demonstrated its capability with alkanes [2] such as dodecane (C12H26, MW 170.34), tetradecane (C14H30, MW 198.34), hexadecane (C16H34, MW 226.44), and octadecane (C18H38, MW 254.49). Typically [(M+yO)-xH]+ species were observed most commonly the [(M+O)-3H]+ species.

Figure 2. Mass Spectra of [M + H]+ ion at m/z 130 corresponding to [C8H19N + H]+ (2a). Mass Spectra of [M + H]+ ion at m/z 163 corresponding to [C10H14N2 + H]+ (2b).

Conclusion

- A compact ionisation source design with respect to a larger prototype has been developed.
- Initial characterisation has shown an output current of the afterglow to be sufficient as a potential high sensitivity ionisation source.
- The source has been tested using both polar and non-polar chemistries, generating comparable data to the previous in house design with [M]** and [(M+O)+H]+ species observed non-polar and protonated [M+H]+ species for polar compounds respectively.
- Future work: Investigate the ionisation modes of the compact source. Further adapted this new compact and flexible source for high throughput applications interfacing to GC and LC.

References

Acknowledgments

Thank you to the National Mass Spectrometry Facility at Swansea University for the use of their equipment and AberMS Limited for the R&D.